

Conformational Analysis and Assignments of Relative Stereocenter Configurations in Fluoroalkyl–Iridium Complexes Using ¹⁹F{¹H} HOESY Experiments. Comparison with Solid-State X-ray Structural Results

Russell P. Hughes,*,† Donghui Zhang,† Antony J. Ward,† Lev. N. Zakharov,‡ and Arnold L. Rheingold[‡]

Contribution from the Departments of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, and University of California, San Diego, California 92093-0358

Received February 12, 2004; E-mail: rph@dartmouth.edu

Abstract: Solution conformations about the metal-carbon bond of the secondary fluoroalkyl ligands in iridium complexes [IrCp*(PMe₃)(R_F)X] [Cp* = C_5Me_5 ; R_F = CF(CF₃)₂, X = I (1), CH₃ (2); R_F = CF(CF₃)- (CF_2CF_3) , X = I (4), CH₃ (5)] have been determined using ¹⁹F{¹H} HOESY techniques. The molecules adopt the staggered conformation with the tertiary fluorine in the more hindered sector between the PMe₃ and X ligands, with CF₃ (and CF₂CF₃) substituents lying in the less hindered regions between PMe₃ and Cp* or X and Cp*. In molecules containing the CF(CF₃)₂ ligand, these conformations are identical to those adopted in the solid state. For compound 4, containing the CF(CF₃)(CF₂CF₃) ligand, two diastereomers are observed in solution. Solution conformations and relative stereocenter configuration assignments have been obtained using ¹⁹F{¹H} HOESY and correlated with the X-ray structure for the major diastereomer of 4, which has the (S_{lr}, S_C) or (R_{lr}, R_C) configuration. Relative stereocenter configurations of analogue 5, for which no suitable crystals could be obtained, were assigned using ¹⁹F{¹H} HOESY and proved to be different from **4**, with **5** preferring the (S_{lr}, R_C) or (R_{lr}, S_C) configuration.

Introduction

The observation of nuclear Overhauser effects (nOe) by twodimensional homonuclear ${}^{1}H{}^{1}H{}$ magnetic resonance is a powerful and widely used method in studying solution structures and conformations of biological molecules. For molecules bearing protons and fluorinated groups, two-dimensional ¹⁹F{¹H} HOESY (heteronuclear Overhauser effect spectroscopy) techniques also provide detailed information in solution about the relative spatial orientation of groups containing protons and fluorines, with a cross-peak observed if two nuclei are close in space (≤ 5 Å).¹ It has been extensively used in studying transition metal ion-pair interactions in solution,²⁻²⁰ time

- [‡] University of California, San Diego.
- (1) Neuhaus, D.; Williamson, M. P. The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed.; Wiley-VCH: New York, 2000.
- Macchioni, A.; Magistrato, A.; Orabona, I.; Ruffo, F.; Rothlisberger, U.; Zuccaccia, C. *New J. Chem.* **2003**, *27*, 455–458.
 Macchioni, A.; Romani, A.; Zuccaccia, C. Organometallics **2003**, *22*, 1526–
- 1533.

- (4) Macchioni, A. *Eur. J. Inorg. Chem.* 2003, 195–205.
 (5) Kumar, P. G. A.; Pregosin, P. S.; Goicoechea, J. M.; Whittlesey, M. K. *Organometallics* 2003, 22, 2956–2960.
 (6) Drago, D.; Pregosin, P. S.; Pfaltz, A. *Chem. Commun.* 2002, 286–287.
 (7) Burini, A.; Fackler, J. P.; Galassi, R.; Macchioni, A.; Omary, M. A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Sabatini, S.; Zuccaccia, C. J. Am. 2002, 2020, 2124, 4570. Am. Chem. Soc. 2002, 124, 4570-4571
- (8) Binotti, B.; Bellachioma, G.; Cardaci, G.; Macchioni, A.; Zuccaccia, C. Organometallics 2002, 21, 346-354.
- Bellachioma, G.; Binotti, B.; Cardaci, G.; Carfagna, C.; Macchioni, A.; Sabatini, S.; Zuccaccia, C. *Inorg. Chim. Acta* **2002**, *330*, 44–51.

averaged ion-pair structures of organic salts,²¹ and interactions of ¹⁹F-labeled substrates with proteins at the active sites.^{22,23} We have used this technique to determine the conformations and relative proximities of fluorine substituents in aryl ligands to neighboring phosphines,^{24,25} but we are unaware of any applications of this technique in the determination of intramo-

- (10) Zuccaccia, C.; Bellachioma, G.; Cardaci, G.; Macchioni, A. J. Am. Chem. Soc. 2001, 123, 11020-11028.
- (11) Romeo, R.; Fenech, L.; Scolaro, L. M.; Albinati, A.; Macchioni, A.; Zuccaccia, C. *Inorg. Chem.* 2001, *40*, 3293–3302.
 (12) Goumain, S.; Oulyadi, H.; Jubault, P.; Feasson, C.; Quirion, J.-C. *J. Chem. Soc., Perkin Trans. 1* 2001, 701–705.
- (13) Bellachioma, G.; Cardaci, G.; D'Onofrio, F.; Macchioni, A.; Sabatini, S.;
- Zuccaccia, C. *Eur. J. Inorg. Chem.* 2001, 1605–1611.
 Bellachioma, G.; Cardaci, G.; Macchioni, A.; Zuccaccia, C. *J. Organomet.*
- *Chem.* 2000, 593–594, 119–126.
 (15) Bellachioma, G.; Cardaci, G.; Macchioni, A.; Valentini, F.; Zuccaccia, C.; Foresti, E.; Sabatino, P. *Organometallics* 2000, *19*, 4320–4326. (16) Bachechi, F.; Burini, A.; Galassi, R.; Macchioni, A.; Pietroni, B. R.; Ziarelli,
- F.; Zuccaccia, C. J. Organomet. Chem. 2000, 593-594, 392-402.
- (17) Zuccaccia, C.; Macchioni, A.; Orabona, I.; Ruffo, F. Organometallics 1999, 18, 4367-4372.
- (18) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Travaglia, M.; Zuccaccia, C.; Milani, B.; Corso, G.; Zangrando, E.; Mestroni, G.; Carfagna, C.; Formica, M. Organometallics **1999**, *18*, 3061–3069.
- Formica, M. Organometallics 1999, 18, 3061–3069.
 (19) Romeo, R.; Nastasi, N.; Scolaro, L. M.; Plutino, M. R.; Albinati, A.; Macchioni, A. Inorg. Chem. 1998, 37, 5460–5466.
 (20) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Gramlich, V.; Rueegger, H.; Terenzi, S.; Venanzi, L. M. Organometallics 1997, 16, 2139–2145.
 (21) Hofstetter, C.; Pochapsky, T. C. Magn. Reson. Chem. 2000, 38, 90–94.
 (22) Girate, D. P. Uch, K. D. J. Birner, 1014, 1025, 5, 415, 4419.
- (23) Cistola, D. P.; Hall, K. B. J. Biomol. NMR 1995, 5, 415-419.
- (24) Hughes, R. P.; Laritchev, R. B.; Williamson, A.; Incarvito, C. D.; Zakharov,
- L. N.; Rheingold, A. L. Organometallics 2003, 22, 2134–2141.
 (25) Hughes, R. P.; Laritchev, R. B.; Williamson, A.; Incarvito, C. D.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2002, 21, 4873–4885.

[†] Dartmouth College.

lecular conformations in organometallic systems involving fluoroaliphatic ligands. In view of our recent results on the activation of α -CF bonds in fluoroalkyl complexes of iridium,^{26–28} we have been interested in determining the preferred solution conformations of the fluoroalkyl ligands in these compounds. Here, we describe application of the ¹⁹F{¹H} HOESY technique to the determination of the solution conformations and, where applicable, the assignment of relative diastereomeric stereocenter configurations in complexes containing secondary fluoroalkyl ligands.

Results and Discussion

The compounds of interest here are all prepared using the general methodology of oxidative addition of a fluoroalkyl iodide (R_FI) to $Cp*Ir(CO)_2$ to give $Cp*Ir(CO)(R_F)I$, followed by replacement of CO by PMe₃ to afford Cp*Ir(PMe₃)(R_F)I. The synthesis and solid-state molecular structures of perfluoro-iso-propyl compound 1 have been reported previously.29 Conversion to the corresponding methyl compound 2 can be achieved via methylation of an intermediate triflate compound Cp*Ir(PMe₃)(R_F)OT_F using excess MeLi, as reported previously for a primary fluoroalkyl analogue.²⁶ Reaction with 1 equiv of ZnMe₂ at low temperatures gives about 80% yield of 2, while use of excess ZnMe₂ results in complex mixtures of products. The best method involves alkylation using 0.5 equiv of Cp_2ZrMe_2 at room temperature to afford 2 quantitatively. It is important to replace iodide (or bromide or chloride) on Ir with triflate prior to alkylation, as the halo compounds do not alkylate under these conditions. Consequently, it is also important to use halide free alkylating agents; Grignard reagents or halidecontaining methyllithium solutions rapidly convert the intermediate Ir-triflate to the halide complex, which is then inert to methylation. Compound 2 has been characterized spectroscopically and by a single-crystal X-ray diffraction study.

The methyl complex 2 displays characteristic Cp* and PMe₃ peaks in the ¹H NMR spectrum. In C₆D₆, the CH₃ group appears as a doublet of quartet of doublets at 0.66 ppm from coupling with ³¹P, one CF₃, and the α -fluorine. In the ¹⁹F NMR spectrum, 2 exhibits two mutually coupled resonances at -69.3 and -69.9 ppm due to the two diastereotopic CF₃ groups, with the one at lower field (-69.3 ppm) also showing additional coupling to the α -fluorine. The higher field CF₃ (-69.9 ppm) appears as a doublet of quartets of doublets of quartets from coupling with the α -fluorine, the other CF₃, ³¹P, and the CH₃. The α -fluorine resonates at -179.6 ppm as a broad singlet due to the

Figure 1. ORTEP diagram of the non-hydrogen atoms of **2**, showing the partial atom-labeling scheme. Thermal ellipsoids are shown at the 30% level. Selected bond lengths (Å) and angles (deg): Ir(1)-C(17), 2.22(2); Ir(1)-C(11), 2.150(16); Ir(1)-C(10), 1.9162(5); Ir(1)-P(1), 2.258(4); C(11)-F(1), 1.429(15); Ct01-Ir(1)-C(17), 120.0(6); Ct01-Ir(1)-C(11), 129.6(4); Ir(1)-C(11)-Ir(1)-P(1), 127.48(11); Ir(1)-C(11)-C(12), 116.0(10); Ir(1)-C(11)-C(13), 113.30(11); Ir(1)-C(11)-F(1), 112.00(12); C(11)-Ir(1)-P(1), 94.1(4); C(11)-Ir(1)-C(17), 87.0(7); C(17)-Ir(1)-P(1), 83.5(5).

complicated coupling with the two CF₃ groups as well as ³¹P. The corresponding ³¹P{¹H} spectrum exhibits a doublet of quartets from coupling with the α -fluorine and the higher field CF₃ (-69.9 ppm). Compound **2** was also characterized by a single-crystal X-ray diffraction experiment; an ORTEP representation of the structure, along with representative bond lengths and angles, is shown in Figure 1. Details of the structural determination are provided in Table 1.

The three staggered conformations of complexes 1 and 2 are viewed in Figure 2, as Newman projections looking down the C-Ir bond of the fluoroalkyl ligand. The 15 protons of a rapidly rotating pentamethylcyclopentadienyl (Cp*) ligand, and the nine protons of a likewise rapidly rotating PMe₃ ligand, provide two spatial reference points; in compounds where $X = CH_3$, the three methyl protons provide information about the third sector of space around iridium. Based on the known solid-state structure of a number of such piano-stool complexes of Ir, it is clear that the three spatial zones around Ir between the Cp*, PMe₃, and X ligands should have quite different abilities to accommodate the steric requirements of the individual components of the fluoroalkyl ligand. The acute P-Ir-I angle of approximately 85° contrasts with the far more obtuse angles between I (120°) or PMe₃ (125°) and the Cp* centroid and suggests that the former zone is likely to be more sterically crowded than the latter two.²⁹ This prediction is borne out by the observed structures of 1^{29} and 2, which favor conformation A.

Compounds 1^{29} and 2, for which the solid-state structures are known, were chosen as the simplest tests of the applicability of the HOESY technique to the determination of solution conformations. No attempts were made to use this technique to measure specific distances as others have done;^{4,10} this is far more time-consuming, and here we are concerned only with determining relative proximities closely enough to afford a rapid, yet unambiguous determination of solution conformation or relative configuration.

The ${}^{19}F{}^{1}H$ HOESY spectrum obtained for **1** is shown in Figure 3. The following observations can be made from the

⁽²⁶⁾ Hughes, R. P.; Zhang, D.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2002, 21, 4902–4904.

⁽²⁷⁾ Hughes, R. P.; Willemsen, S.; Williamson, A.; Zhang, D. Organometallics 2002, 21, 3085–3087.

 ⁽²⁸⁾ Hughes, R. P.; Smith, J. M. J. Am. Chem. Soc. 1999, 121, 6084–6085.
 (29) Hughes, R. P.; Smith, J. M.; Liable-Sands, L. M.; Concolino, T. E.; Lam,

K.-C.; Incarvito, C.; Rheingold, A. L. J. Chem. Soc., Dalton Trans. 2000, 873–879.

Table 1.	Crystal.	Data	Collection.	and Refine	ement Paran	neters
			00.000.01.01.1			

compound	2	3	4
formula	C ₁₇ H ₂₇ F ₇ PIr	$C_{15}H_{15}F_9O_3IIr$	C ₁₇ H ₂₄ F ₉ PIIr
formula weight	587.56	701.37	749.43
space group	$P2_{1}2_{1}2_{1}$	$P2_1/n$	Cc
<i>a</i> , Å	9.4733(4)	8.5210(7)	9.4637(7)
b, Å	11.9166(5)	15.2085(12)	15.4169(7)
<i>c</i> , Å	17.5861(8)	14.6563(12)	14.9804(9)
α, deg			
β , deg		95.585(2)	90.160(2)
γ, deg			
V, Å ³	1985.29(15)	1890.3(3)	2185.6(2)
Ζ	4	4	4
crystal color, habit	colorless, block	orange/yellow, plate	orange/yellow, block
D (calc), g cm ⁻³	1.966	2.464	2.278
μ (Mo K α), mm ⁻¹	6.87	8.78	7.67
temp, K	100(2)	173(2)	173(2)
diffractometer	Bruker Smart Apex CCD	Siemens P4 CCD	Siemens P4 CCD
radiation	Mo K α ($\lambda = 0.71073$ Å)	Mo K α ($\lambda = 0.71073$ Å)	Mo K α ($\lambda = 0.71073$ Å)
measured reflns	9127	9099	5251
independent reflns	2932 $[R_{int} = 0.0371]$	$4029 [R_{int} = 0.0638]$	$3485 [R_{int} = 0.0514]$
$R(F), \%^a$	5.07	4.50	3.64
$R (wF^2),\%^b$	11.75	12.14	9.57

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R(\omega F^{2}) = \{\sum [\omega(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [\omega(F_{o}^{2})^{2}] \}^{1/2}; \\ \omega = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], P = [2F_{c}^{2} + \max(F_{o}, 0)] / 3.$

Figure 2. Newman projections, viewed down the C-Ir bond, of the three staggered conformations of complexes 1 and 2.

observed cross-peaks: one of the diastereotopic trifluoromethyl groups, CF_3^A , is close in space to both Cp^* and PMe_3 ; the other, CF_3^B , is close to Cp^* only; the tertiary F_A is close in space to PMe₃ only. The only solution conformation consistent with these observations is shown in Figure 4, using a Newman projection, along with an ORTEP representation of the previously determined crystal structure for this complex, both viewed along the α -C_F-Ir bond.²⁹ Clearly, the preferred solution conformation is the same as that observed in the solid state. As expected, the more sterically crowded P-Ir-I sector accommodates F rather than the more sterically demanding CF_3 .

Notably, in the one-dimensional ³¹P{¹H} NMR spectrum of **1**, the PMe₃ signal appears as a doublet of quartets from coupling with the tertiary F_A and only the CF₃ identified by the HOESY experiment as CF_3^A , which is closer in space to PMe₃. As observed previously for fluoroaryl ligands,^{24,25} larger values of J_{PF} are observed at shorter P–F distances in these types of complexes.

In complex **1**, the iodide ligand is NMR silent and a nonreporter for the zone in which it lies. The ¹⁹F{¹H} HOESY spectrum for the analogous methyl complex **2** is shown in Figure 5. From the ¹⁹F{¹H} HOESY spectrum, analogous qualitative observations can be made: one CF₃^A is close in space to both Cp* and PMe₃; the other CF₃^B is close to both Cp* and CH₃; the tertiary F_A is close in space to both PMe₃ and CH₃. These observations are presented graphically in Figure 6, using a Newman projection and an ORTEP view of the crystal structure for **2**, each viewed along the α -C_F-Tr bond. Clearly, the solution conformation is again that observed in the solid state.

Figure 3. $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ HOESY spectrum for 1 in $\mathrm{C}_6\mathrm{D}_6$ solution: mixing time 2.4 s.

Once again, the $^{19}F\{^1H\}$ HOESY results are consistent with the $^{31}P-^{19}F$ coupling pattern observed in the one-dimensional $^{31}P\{^1H\}$ NMR spectrum, in which the PMe₃ appears as a doublet of quartets from coupling to F_A and the closer $CF_3{}^A$ substituent.

With these promising results in hand, the synthesis and conformational characterization of diastereomeric analogues was attempted. Utilization of perfluoro-*sec*-butyliodide as the sub-

Figure 4. The solution conformation deduced from the ${}^{19}F{}^{1}H$ HOESY experiment and solid-state structure of **1**. Both are shown as Newman projections down the C–Ir bond. (The curved lines show the observed nOe interactions.)

Figure 5. $^{19}F{^{1}H}$ HOESY spectrum for complex 2 in C_6D_6 : mixing time 3.0 s.

strate should afford diastereomeric complexes due to the presence of two stereocenters, at Ir and at the α -carbon of the fluoroalkyl ligand.

Oxidative addition of perfluoro-*sec*-butyl iodide [ICF(CF₃)-(CF₂CF₃)] to Cp*Ir(CO)₂ proceeds rapidly at room temperature with displacement of CO, furnishing Cp*Ir(CO)[CF-(CF₃)(C₂F₅)]I (**3**) as a ~2.5:1 mixture of two diastereomers. Epimerization is fairly slow for **3** at room temperature, reaching a ~7.2:1 equilibrium ratio after more than a week at room temperature. The substitution reaction of **3** with PMe₃ occurs in refluxing toluene within a few hours to give Cp*Ir-

Figure 6. The solution conformation of 2 deduced from the ${}^{19}F{}^{1}H$ HOESY experiment and the solid-state structure of 2. (The curved lines show the observed nOe interactions.)

 $(PMe_3)[CF(CF_3)(CF_2CF_3)]I$ (4), as a ~5:1 mixture of two diastereomers. The diastereomer ratio varies with the refluxing time, indicating that under these conditions 4 has a configurationally labile metal center, inversion at which results in epimerization of the two diastereomers.

The carbonyl complex 3 has been characterized by IR and NMR spectroscopy, although no diastereomer separation was attempted. The coordinated CO in both diastereomers gives rise to a strong band at 2047 cm⁻¹ in the IR spectrum. Each diastereomer of 3 displays a characteristic Cp* peak in the ¹H NMR spectrum, and, in the ¹⁹F NMR spectrum (CDCl₃), two sets of ¹⁹F resonances in a ratio of ~ 2.5 :1 for the sec-C₄F₉ moiety of 3 are observed. The major diastereomer of 3 exhibits two strongly coupled resonances at -87.1 and -113.3 ppm due to the diastereotopic geminal fluorines of the CF₂ group. The CF_3^A , CF_3^B , and the α - F_A of the major diastereomer appear as three broad singlets at -67.1, -79.3, and -156.1ppm, respectively. Similarly, the CF₂ group of the minor diastereomer appears as two broad doublets at -90.1 and -111.0 ppm. The corresponding CF₃^A, CF₃^B, and α -F_A appear as three singlets at -66.5, -78.8, and -162.0 ppm, respectively. The coupling patterns for the resonances in the ¹⁹F NMR spectrum cannot be fully resolved due to the broadness of the signals. However, the presence of the sec-C₄F₉ moiety is unambiguously identifiable from the chemical shifts and integration values.

Diastereomeric PMe₃ complexes **4** were also unambiguously characterized by NMR spectroscopy. Both diastereomers of **4** show characteristic Cp* and PMe₃ peaks in the ¹H NMR spectrum. Interestingly, the PMe₃ signal of the major diastereomer appears as a doublet of doublets from coupling to ³¹P and the α -F_A, whereas that of the minor diastereomer resonates as a doublet of doublets from coupling to ³¹P, the α -F_A,

and one of the geminal fluorines of the CF₂ group. In the ¹⁹F NMR spectrum (CD_2Cl_2), the major diastereomer of 4 exhibits strongly coupled resonances at -79.0 and -113.6 ppm due to the CF₂, with the higher field resonance appearing as a doublet of quartets of doublets from coupling with the other geminal fluorine, CF_3^A , and the α -F_A. The CF_3^A appears as a doublet of doublet of quartet of doublets at -69.0 ppm from coupling with one of the higher field CF₂ resonances, the α -F_A, the CF₃^B, and also ${}^{31}P$. The CF₃^B resonates at -79.5 ppm as a doublet of quartet of doublets from coupling with the α -F_A, CF₃^A, and the lower field CF₂ fluorine. The α -F_A resonates at -162.2 ppm as a complicated multiplet due to coupling to eight other fluorines, nine protons from PMe₃, and ³¹P. The corresponding ${}^{31}P{}^{1}H{}$ spectrum exhibits a doublet of quartets at -40.6 ppm from coupling with the α -F_A and CF₃^A. These data, particularly those involving the coupling between CF₃^A and ³¹P, strongly suggest that the conformation of the major diastereomer is one in which CF_3^A occupies the spatial zone near PMe₃.

For the minor diastereomer of **4**, the ³¹P{¹H} spectrum exhibits a doublet of doublets at -41.1 ppm from coupling to one of the lower field CF₂ fluorines and the α -F_A. The corresponding lower field CF₂ fluorine appears as a doublet of doublet of doublet of decets from coupling with the other geminal fluorine, ³¹P, α -F_A, and nine protons from PMe₃. The other geminal fluorine appears as a doublet of quartet of doublets due to the geminal coupling and also the couplings with the CF₃^A and the α -F_A. The CF₃^B appears at -78.8 ppm as a doublet of quartets from coupling with the α -F_A and CF₃^A, which appear as broad peaks at -157.4 and -61.3 ppm. No coupling is observed between CF₃^A and ³¹P, suggesting that, in the minor diastereomer, this CF₃^A lies in the zone opposite to PMe₃, an observation complemented by observation of coupling between ³¹P and one of the CF₂ fluorines.

The relative configurations of the major diastereomers of 3 and 4 have been determined by correlation of their ¹⁹F NMR spectra with their X-ray crystal structures. ORTEP views of the molecular structures of **3** and **4** are shown in Figures 7 and 8, respectively. The NMR correlation experiment was done by dissolving the same crystal mounted for X-ray diffraction data collection in a minimum amount of a deuterated solvent at -75°C and recording the ¹⁹F NMR spectrum at -75 °C for several hours to obtain a satisfactory signal. The samples were then allowed to warm to room temperature. In the case of 4, the ¹⁹F NMR spectrum showed one set of ¹⁹F resonances corresponding to the major diastereomer of 4. In the case of 3, the 19 F NMR spectrum was initially only that of the major diastereomer, with the gradual appearance of signals corresponding to the minor diastereomer over time at room temperature, indicating that epimerization at the iridium center for 3 was faster than that of 4. Consequently, for both 3 and 4, the crystallographic determinations show that the major diastereomers have (S_{Ir}, S_C) or $(R_{\rm Ir}, R_{\rm C})$ relative configurations at the metal center and the α -carbon, respectively, with the minor diastereomers in each case adopting (R_{Ir}, S_C) or (S_{Ir}, R_C) relative configurations. To define the relative configuration at the iridium center, Cp* is arbitrarily treated as an atom with a C5 (60) molecular weight.³⁰ Every NMR resonance corresponding to each diastereomer is thereby defined unambiguously.

In the solid state, the major diastereomer of **3** adopts a conformation in which the CF_2CF_3 group is eclipsed with the

Figure 7. ORTEP diagram of the non-hydrogen atoms of the major diastereomer of **3**, showing the partial atom-labeling scheme. Thermal ellipsoids are shown at the 30% level. Selected bond lengths (Å) and angles (deg): Ir(1)-C(11), 1.876(10); Ir(1)-C(12), 2.144(9); Ir(1)-C(11), 1.8677-(4); Ir(1)-I(1), 2.7018(7); C(11)-O(1), 1.053(12); C(12)-F(1), 1.431(11); Ct01-Ir(1)-C(11), 125.7(4); Ct01-Ir(1)-C(12), 124.5(3); Ct01-Ir(1)-I(1), 120.37(2); C(11)-Ir(1)-C(12), 93.2(4); C(11)-Ir(1)-I(1), 87.9(3); C(12)-Ir(1)-I(1), 96.0(3); Ir(1)-C(12)-C(13), 115.2(7); Ir(1)-C(12)-C(14), 115.3(7); Ir(1)-C(12)-F(1), 107.9(6); C(13)-C(12)-C(14), 113.1(9).

Figure 8. ORTEP diagram of the non-hydrogen atoms of the major diastereomer of **4**, showing the partial atom-labeling scheme. Thermal ellipsoids are shown at the 30% level. Selected bond lengths (Å) and angles (deg): Ir(1)-C(11), 2.150(12); Ir(1)-Ct01, 1.881(10); Ir(1)-I(1), 2.7026-(8); Ir(1)-P(1), 2.296(3); C(11)-F(1), 1.404(11); Ct01-Ir(1)-C(11), 130.8 (8); Ct01-Ir(1)-I(1), 119.1(7); Ct01-Ir(1)-P(1), 126.2(8); C(11)-Ir(1)-I(1), 89.3(3); C(11)-Ir(1)-P(1), 91.9(3); P(1)-Ir(1)-I(1), 86.83(7); Ir(1)-C(11)-C(12), 114.7(8); Ir(1)-C(11)-C(14), 115.3(7); Ir(1)-C(11)-F(1), 112.5(7); C(12)-C(11)-C(14), 109.2(10).

CO ligand, the α -CF₃ is close to the iodide, and the α -fluorine is close to the Cp*, as shown in Figure 5. This conformation is almost identical to that found in the perfluoro-iso-propyl analogue Cp*Ir[CF(CF₃)₂](CO)I.²⁹ In contrast, the major diastereomer of **4** adopts a staggered conformation in the solid state, as found for its perfluoro-iso-propyl analogue **1**.²⁹

This correlation of diastereomer configuration with NMR resonances is a classic method, but one which is dependent upon obtaining satisfactory crystals for an X-ray structural determination, and a direct NMR correlation experiment in which the stereochemical integrity of the stereocenter at the metal is not compromised during the time course of the experiment. The dangers associated with some attempted correlations are well established.^{30,31} Furthermore, while such correlations may

⁽³⁰⁾ Brunner, H. Angew. Chem., Int. Ed. 1999, 38, 1194-1208.

⁽³¹⁾ Brunner, H. Eur. J. Inorg. Chem. 2001, 905-912.

Figure 9. ${}^{19}F{}^{1}H$ HOESY spectrum for the diastereomers of 4 in C₆D₆: mixing time 3.0 s.

confirm the relative configurational relationships between stereocenters, they have nothing unambiguous to say about solution conformations, which may be different from that observed in the crystal. The data described already suggest that the presence or absence of ${}^{19}\text{F}{-}^{31}\text{P}$ coupling is capable of distinguishing which groups are close in space to ${}^{31}\text{P}$, but such data may not always be available, and we sought further confirmation of the solution conformations of each diastereomer of **4** using HOESY techniques.

The ¹⁹F{¹H} HOESY spectrum of a mixture of the diastereomers of 4 is shown in Figure 9. Assignment of the conformations is straightforward. In the major diastereomer of 4, CF_3^A is close to PMe₃ and Cp*; F_B, F_C, and CF₃^B are close to Cp* only; FA is close in space to PMe3 only. Cross-peaks for the minor diastereomer are complementary and illustrate that CF3^A is close to Cp* but not to PMe₃; and F_A is close to PMe₃ only. More detail is provided in the ${}^{19}F{}^{1}H{}$ HOESY spectrum of a sample of 4 containing predominantly the major diastereomer, shown in Figure 10, along with the deduced solution-state conformation and the corresponding solid-state structure, each viewed along the α -C_F-Ir bond. Once again, the conclusion is clear, that the solution conformation of the major diastereomer is the same as that observed in the solid state, and that of the minor diastereomer involves switching the locations of CF₃^A and the CF₂CF₃ substituents of the fluorocarbon ligand as shown in Figure 11.

The doublet of quartets coupling pattern in the one-dimensional ³¹P{¹H} NMR spectrum of the major diastereomer of **4** also lends credibility to the solution-state structure determined by HOESY: clearly, the splitting pattern is due to ³¹P coupling to CF₃^A and F_A, which occupy zones adjacent to the PMe₃ ligand. Similarly, the one-dimensional ³¹P{¹H} NMR spectrum for the minor diastereomer also agrees with the solution-state structure determined by the ¹⁹F{¹H} HOESY data: the doublet of doublets is the result of ³¹P coupling to F_A and F_B.

Overall, the ${}^{19}F{}^{1}H{}$ HOESY data for the major and minor diastereomers of compound **4** are mutually consistent. As a final test, the ${}^{19}F{}^{1}H{}$ HOESY technique was applied to the determination of the solution conformation and relative configurations of Cp*Ir(PMe₃)[CF(CF₃)(C₂F₅)]CH₃ (**5**), for which crystals suitable for X-ray diffraction could not be obtained.

The methyl compound **5** was synthesized in quantitative yields as a 1.7:1 mixture of two diastereomers by reaction of the triflate precursor Cp*Ir[CF(CF₃)(C₂F₅)](PMe₃)OTf and Cp₂Zr(CH₃)₂. As expected, **5** displays two sets of characteristic Cp*, PMe₃, and CH₃ resonances in the ¹H NMR spectrum, two sets of ¹⁹F resonances, and two ³¹P resonances, corresponding to the two diastereomers. The CH₃ resonance of the major diastereomer appears as a doublet of quartets from coupling with ³¹P and CF₃^A, while that of the minor diastereomer appears as a doublet of doublets from coupling with ³¹P and one of the geminal fluorines. The PMe₃ resonance of the major diastere-

Figure 10. ¹⁹F{¹H} HOESY spectrum (C_6D_6 : mixing time 3.0 s) of the major diastereomer of **4**, the deduced solution conformation, and the corresponding solid-state structure. (The curved lines show the observed NOE interactions.)

omer appears as a doublet of doublet of doublets from coupling with ³¹P, the F_A , and one of the geminal fluorines of the CF₂, while the corresponding resonance for the minor diastereomer appears as a doublet of doublets from coupling with ³¹P and F_A . Likewise, the ³¹P{¹H} spectrum of the major diastereomer exhibits a doublet of doublets from coupling with F_A and one of the geminal fluorines, and the corresponding resonance for the minor diastereomer exhibits a doublet of quartets from coupling with α - F_A and CF₃^A. Based on the observations outlined above, these data alone strongly suggest that the configuration for the major diastereomer of 5 is the same as that for the minor diastereomer of 4.

The ¹⁹F{¹H} HOESY spectrum for the two diastereomers of **5** is shown in Figure 12. Once again, assignment of conformation and relative configuration is straightforward. In the major diastereomer, CF_3^A is close to both Cp^* and CH_3 but not to PMe_3 ; F_A is close in space to PMe_3 and CH_3 ; CF_3^B and the geminal fluorines F_B and F_C are close to Cp^* and PMe_3 . Crosspeaks for the minor diastereomer show that CF_3^A is close to both Cp^* and PMe_3 but not to CH_3 ; F_A is close in space to CH_3 ; F_A is close to both Cp^* and PMe_3 but not CH_3 ; F_A is close to both Cp^* and PMe_3 but not CH_3 ; F_A is close to both Cp^* and PMe_3 but not CH_3 ; F_A is close in space to F_A is close in space to CH_3 ; F_A is close in space to F_A is close in space to F

Figure 11. The solution conformation of the minor diastereomer of **4** deduced from the ${}^{19}F{}^{1}H$ HOESY experiment. (The curved lines show the observed NOE interactions.)

PMe₃ and CH₃; F_C is close to Cp*, and F_B is close to both Cp* and CH₃; CF_3^B is close to Cp* and to the CH₃.

Accordingly, the solution-state conformations for both diastereomers of **5** are clear from those nOe interactions; Newman projections viewed along the α -C_F-Ir bond are shown in Figure 13. The major diastereomer of **5** has the (S_{Ir} , R_C) or (R_{Ir} , S_C) relative configuration, while the minor diastereomer has the (S_{Ir} , S_C) or (R_{Ir} , R_C) relative configuration, that is, the opposite configurations from those of the major and minor diastereomers of **4**. This is a result that would be unobtainable by any other technique without suitable crystals, and it illustrates the power of HOESY in these kinds of molecules.

In summary, the ¹⁹F{¹H} HOESY technique is a powerful tool in establishing the solution conformations and relative configurations of iridium-fluoroalkyl complexes. It provides a powerful complementary alternative method to X-ray crystallography for determining the relative configuration of diastereomers in these kinds of compounds. In the case of iridium(III) complexes bearing perfluoro-iso-propyl and perfluoro-*sec*-butyl ligands, the solution conformations are in good agreement with their solid-state structures. We now feel confident in using this technique for the determination of solution structural information in these and related compounds, and we will report our findings in due course.

Experimental Section

General Considerations. All reactions were performed in ovendried glassware, using standard Schlenk techniques, under an atmosphere of nitrogen which has been deoxygenated over BASF catalyst and dried over Aquasorb, or in a Braun Drybox. Methylene chloride, hexane, diethyl ether, and toluene were dried over an alumina column under nitrogen.³² Benzene was distilled under nitrogen from potassium benzophenone ketyl. IR spectra were recorded on a Perkin-Elmer FTIR 1600 Series spectrometer. NMR spectra were recorded on a Varian Unity Plus 300 FT spectrometer. ¹H NMR spectra were referenced to the protio impurity in the solvent: C_6D_6 (7.16 ppm), CDCl₃ (7.27 ppm), CD₂Cl₂ (5.32 ppm). ¹⁹F NMR spectra were referenced to external CFCl₃ (0.00 ppm). ³¹P{¹H} NMR spectra were referenced to external 85% H₃PO₄ (0.00 ppm). Cp*Ir(PMe₃)[CF(CF₃)₂]I (1) was prepared as previously described.²⁹

Prior to the acquisition of ${}^{1}H{}^{19}F{}$ HOESY spectra, PW90° (irradiation power for the 90° pulse) and T_{1} for both ${}^{1}H$ and ${}^{19}F$ were measured. The mixing time was set to be the longest T_{1} of any protons or fluorines in the complex. Specific mixing times are given in each figure caption. The delay time was set as 1.3 times the longest T_{1} .

 $Cp*Ir(PMe_3)[CF(CF_3)_2](OTf)$. A solution of $Cp*Ir(PMe_3)[CF-(CF_3)_2]I$ (100 mg, 0.143 mmol) in CH_2Cl_2 (5 mL) was added slowly to a slurry of AgOTf (44.1 mg, 0.172 mmol) in CH_2Cl_2 (5 mL). The

reaction mixture was stirred for 30 min and then filtered to give a yellow solution. The solvent was removed under vacuum, and the residue was extracted into toluene to give a yellow solution, which was filtered through a cannula under N₂. The toluene filtrate was concentrated, and hexane was added to precipitate the yellow solid (89 mg, 86%). Anal. Calcd for C₁₇H₂₄F₁₀IrO₃P (721.59): C, 28.29; H, 3.35. Found: C, 28.32; H, 3.37. ¹H NMR (CDCl₃): δ 1.72 (dd, ²*J*_{PH} = 11, ⁵*J*_{HF} = 2, 9H, PMe₃), 1.68 (d, ⁴*J*_{PH} = 2, 15H, C₅Me₅). ¹⁹F NMR (CDCl₃): δ -69.57 (br s, 6F, CF₃), 78.58 (s, 3F, OSO₂CF₃), -114.0 (br s, 1F, CF). ³¹P{¹H} NMR (CDCl₃): δ -19.76 (br s, PMe₃).

Cp*Ir(PMe₃)[CF(CF₃)₂](CH₃) (2). (1) From MeLi: Cp*Ir(PMe₃)-[CF(CF₃)₂]OTf (30 mg, 0.0415 mmol) was partially dissolved in ether (0.5 mL), and the solution was freeze–pump–thawed three times. MeLi/ether (89 μ L, 0.125 mmol, 1.4 M, 3 equiv) was added into the cold solution by syringe under N₂. The reaction solution was allowed to warm to room temperature gradually and was stirred for about 10 min. The solution changed from orange yellow to pale yellow. A few drops of methanol were added to quench the excess MeLi. The solution was then pumped down, and the residue was extracted with hexane to give a yellow solution. Evaporation of hexane from the yellow solution afforded a pale yellow solid (17.6 mg, 72%).

(2) From ZnMe₂: Cp*Ir(PMe₃)[CF(CF₃)₂]OTf (100 mg, 0.138 mmol) was partially dissolved in toluene (0.5 mL), and the solution was freeze-pump-thawed three times. ZnMe₂/toluene (69 μ L, 0.138 mmol, 2 M, 1 equiv) was added into the cold solution by syringe under N₂.The reaction solution was allowed to warm to room temperature gradually and stirred for half an hour. A few drops of methanol were added to quench the excess ZnMe₂. The solution was then pumped down, and the residue was extracted with hexane to give a pale yellow solution. Evaporation of hexane afforded a pale yellow solid (65 mg, 80%).

(3) From Cp₂ZrMe₂: A toluene (20 mL) solution of Cp*Ir(PMe₃)-[CF(CF₃)₂]OTf (15 mg, 0.0208 mmol) and ZrCp₂(CH₃)₂ (2.62 mg, 0.0104 mmol, 0.5 equiv) was stirred at room temperature for 1 h under N₂. The solvent was evaporated, and the residue was extracted into hexane. Removal of hexane under vacuum gave an off-white solid (12.2 mg, 86%). Anal. Calcd for C₁₇H₂₇F₇IrP (587.58): C, 34.75; H, 4.63. Found: C, 34.74; H, 4.60. ¹H NMR (C₆D₆): δ 1.39 (d, ⁴J_{HP} = 2, 15H, C₅Me₅), 1.04 (dd, ²J_{HP} = 10, ⁵J_{HF} = 2, 9H, PMe₃), 0.66 (dqd, ³J_{HP} = 7, ⁵J_{HF} = 2, ⁴J_{HF} = 0.9, 3H, CH₃). ¹⁹F NMR (C₆D₆): δ -69.3 (dq, ³J_{FF} = 10, ⁴J_{FF} = 11, ⁴J_{PF} = 7, PMe₃).

Cp*Ir(CO)[CF(CF₃)(CF₂CF₃)]I (3). Cp*Ir(CO)₂ (100 mg, 0.261 mmol) was dissolved in CH₂Cl₂ (20 mL), and ICF(CF₃)(CF₂CF₃) (99 μ L, 0.287 mmol) was added by syringe under nitrogen. The yellow solution changed to orange and was stirred for 1.5 h. The solvent was removed under vacuum to give an orange powder (165 mg, 90%). The NMR spectra show the product is formed as two diastereomers in a 2.5:1 ratio. The compound can be recrystallized from CH₂Cl₂/hexane. IR (CH₂Cl₂): $\nu_{co} = 2047$ cm⁻¹. Anal. Calcd for C₁₅H₁₅F₉IIrO (701.39): C, 25.69; H, 2.16. Found: C, 25.46; H, 2.07.

The major diastereomer, ¹H NMR (CDCl₃): δ 2.08 (s, 15H, Cp*). ¹⁹F NMR (CDCl₃): δ -67.1 (s, 3F, CF₃^A), -79.3 (s, 3F, CF₃^B), -87.1 (d, ²*J*_{FF} = 289, 1F, CF₂), -113.3 (d, ²*J*_{FF} = 289, 1F, CF₂), -156.1 (br s, 1F, F_A).

The minor diastereomer, ¹H NMR (CDCl₃): δ 2.08 (s, 15H, Cp*). ¹⁹F NMR (CDCl₃): δ -66.5 (s, 3F, CF₃^A), -78.8 (s, 3F, CF₃^B), -90.0 (br d, ²*J*_{FF} = 277, 1F, CF₂), -111.0 (d, ²*J*_{FF} = 277, 1F, CF₂), -162.0 (br s, F_A).

Cp*Ir(PMe₃)[CF(CF₃)(CF₂CF₃)]I (4). Cp*Ir[CF(CF₃)(C₂F₅)](CO)I (160 mg, 0.228 mmol) was dissolved in toluene (15 mL). The solution was freeze-pump-thawed three times, and PMe₃ (30.7 μ L, 0.297 mmol) was added by syringe under nitrogen. The reaction was heated at reflux under nitrogen for 2 h, and the volatiles were removed under vacuum to give a yellow solid, which was washed with hexane and

⁽³²⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518–1520.

Figure 12. ${}^{19}F{}^{1}H$ HOESY spectrum for the two diastereomers of 5 in C₆D₆: mixing time 2.4 s.

dried under vacuum, affording the product in 92% yield (157 mg). The NMR spectra show the product is formed as two diastereomers in a \sim 5:1 ratio. The compound can be recrystallized from CH₂Cl₂/hexane. Anal. Calcd for C₁₇H₂₄F₉IIrP (749.46): C, 27.24; H, 3.23. Found: C, 27.28; H, 3.12.

The major diastereomer, ¹H NMR (C₆D₆): δ 1.40 (d, ⁴J_{HP} = 2, 15H, Cp*), 1.33 (d, ²J_{HP} = 10, 9H, PMe₃). ¹⁹F NMR (C₆D₆): δ -68.5 (ddqd, ⁴J_{FF} = 21, ³J_{FF} = 15, ⁵J_{FF} = 8, ⁴J_{PF} = 8, 3F, CF₃^A), -78.5 (br d, ²J_{FF} = 265, 1F, CF₂), -78.6 (dqd, ⁴J_{FF} = 20, ⁵J_{FF} = 8, ³J_{FF} = 3, 3F, CF₃^B), -112.9 (dqd, ²J_{FF} = 265, ⁴J_{FF} = 21, ³J_{FF} = 7, 1F, CF₂), -161.2 (br s,

1F, F_A). ³¹P{¹H} NMR (C₆D₆): δ -40.6 (dq, ³J_{PF} = 10, ⁴J_{PF} = 8, PMe₃).

The minor diastereomer, ¹H NMR (C₆D₆): δ 1.40 (d, ⁴J_{HP} = 2, 15H, Cp*), 1.33 (d, ²J_{HP} = 11, 9H, PMe₃). ¹⁹F NMR (C₆D₆): δ -60.6 (br s, 3F, CF₃^A), -78.0 (br s, 3F, CF₃^B), -96 (d, ²J_{FF} = 289, 1F, CF₂), -110.0 (br d, ²J_{FF} = 289, 1F, CF₂), -156.4 (br s, 1F, F_A). ³¹P{¹H} NMR (C₆D₆): δ -42.0 (dd, ⁴J_{PF} = 36, ³J_{PF} = 8, PMe₃).

Cp*Ir(PMe₃)[CF(CF₃)CF₂CF₃]OTf. Cp*Ir[CF(CF₃)(C₂F₅)](PMe₃)I (116 mg, 0.15 mmol) was dissolved in toluene (10 mL) and was added into an AgOTf (41.9 mg, 0.16 mmol)/toluene (10 mL) slurry dropwise.

Figure 13. The solution conformations of the two diastereomers of 5 deduced from ${}^{19}F{}^{1}H$ HOESY experiment. (The curved lines show the observed NOE interactions.)

The solution was stirred for 30 min and was filtered under N₂ to give a yellow solution. The solution was concentrated, and hexane was added to precipitate a yellow solid (116 mg, 96%). ¹H NMR (C₆D₆): δ 1.24 (dd, ²*J*_{HP} = 11, ⁵*J*_{HF} = 3, 9H, PMe₃), 1.14 (d, ²*J*_{HP} = 2, 15H, C₅Me₅). ¹⁹F NMR (C₆D₆): δ -67.8 (s, 3F, CF₃^A), -77.9 (s, 3F, SO₃CF₃), 79.5 (br s, 3F, CF₃^B), -91.3 (br d, ²*J*_{FF} = 283, 1F, CF₂), -112.7 (br d, ²*J*_{FF} = 265, 1F, CF₂), -180.1 (br s, 1F, F_A). ³¹P{¹H} NMR (C₆D₆): δ -22.8 (br d, ³*J*_{PF} = 19, PMe₃).

Cp*Ir(PMe₃)[CF(CF₃)CF₂CF₃]CH₃ (5). A toluene (20 mL) solution of Cp*Ir(PMe₃)[CF(CF₃)(C₂F₅)]OTf (50 mg, 0.065 mmol) and Cp₂Zr-(CH₃)₂ (16.3 mg, 0.065 mmol, 1 equiv) was stirred at room temperature for 1 h under N₂. The solvent was removed on a rotary evaporator, and the residue was extracted into hexane. Removal of hexane under vacuum gave a white solid as a 1.7:1 mixture of two diastereomers, which was recrystallized from hexanes (34 mg, 83%). Anal. Calcd for C₁₈H₂₇F₉IrP (637.59): C, 33.91; H, 4.27. Found: C, 33.54; H, 3.89.

The major diastereomer, ¹H NMR (C₆D₆): δ 1.39 (d, ⁴J_{HP} = 2, 15H, C₅Me₅), 1.05 (ddd, ²J_{HP} = 10, ⁵J_{HF} = 1, ⁵J_{HF} = 1, 9H, PMe₃), 0.64 (dq, ³J_{HP} = 7, ⁵J_{HF} = 2, 3H, CH₃). ¹⁹F NMR (C₆D₆): δ -68.4 (qddq, ⁵J_{FF} = 11, ⁴J_{FF} = 9, ³J_{FF} = 9, ⁶J_{HF} = 2, 3F, CF₃^A), -78.6 (dq, ⁴J_{FF} =

11, ${}^{5}J_{FF} = 11$, 3F, CF₃^B), -96.0 (br dd, ${}^{2}J_{FF} = 288$, ${}^{4}J_{PF} = 8$, 1F, CF₂), -108.6 (ddq, ${}^{2}J_{FF} = 288$, ${}^{3}J_{FF} = 9$, ${}^{4}J_{FF} = 9$, 1F, CF₂), -180.8 (br s, 1F, F_A). ${}^{31}P{}^{1}H$ NMR (C₆D₆): δ -39.0 (dd, ${}^{3}J_{PF} = 30$, ${}^{4}J_{PF} = 8$, PMe₃).

The minor diastereomer, ¹H NMR (C_6D_6): δ 1.39 (d, ⁴ J_{HP} = 2, 15H, C_5Me_5), 1.01 (dd, ² J_{HP} = 10, ⁵ J_{HF} = 2, 9H, PMe₃), 0.57 (dd, ³ J_{HP} = 6, ⁵ J_{HF} = 2, 3H, CH₃). ¹⁹F NMR (C_6D_6): δ -68.9 (ddqd, ⁴ J_{FF} = 20, ³ J_{FF} = 13, ⁵ J_{FF} = 8, ⁴ J_{PF} = 6, 3F, CF₃^A), -80.0 (dq, ⁴ J_{FF} = 21, ⁵ J_{FF} = 8, 3F, CF₃^B), -87.7 (br d, ² J_{FF} = 279, 1F, CF₂), -113.8 (dqd, ² J_{FF} = 279, ⁴ J_{FF} = 20, ³ J_{FF} = 7, 1F, CF₂), -179.0 (br s, 1F, F_A). ³¹P{¹H} NMR (C₆D₆): δ -36.5 (dq, ³ J_{PF} = 6, ⁴ J_{PF} = 6, PMe₃).

X-ray Crystal Structure Determinations. Diffraction intensity data were collected with Bruker Smart Apex CCD (**2**) and Siemens P4 CCD (**3**,**4**) diffractometers. Crystal, data collection, and refinement parameters are given in Table 1. The structures were solved using the Patterson function, completed by subsequent difference Fourier syntheses, and refined by full matrix least-squares procedures on F^2 . SADABS absorption corrections were applied to all structures. In all structures, all non-hydrogen atoms were refined with anisotropic displacement coefficients, and hydrogen atoms were treated as idealized contributions. The Flack parameters for noncentrosymmetrical structures **2** and **4** are 0.10(2) and 0.034(9), respectively. All software and sources of scattering factors are contained in the SHELXTL (5.10) program package (G. Sheldrick, Bruker XRD, Madison, WI).

Acknowledgment. This work is dedicated to Professor Walter H. Stockmayer, an inspirational colleague, teacher, and expert on the conformational properties of fluorinated chains, on the occasion of his 90th birthday. R.P.H. is grateful to the National Science Foundation for generous research support.

Supporting Information Available: Crystallographic information files (CIF) for compounds **2**, **3**, and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

JA049225Q